26.07.2021

Ученые ГГФ нашли способ определять тип почвы из космоса

Ученые геолого-географического факультета и Биологического института Томского госуниверситета создают карты пространственной неоднородности почвенного покрова по составу земель сельскохозяйственного назначения. Эти карты помогут правильно классифицировать почвы для высокотехнологичного земледелия. В работе используются алгоритмы машинного обучения и данные дистанционного зондирования Земли с космического аппарата Sentinel-2. Состав почв по методике ученых ГГФ впервые определяется с высокой точностью – 76%.

Результаты исследования опубликованы в журнале Современные проблемы дистанционного зондирования Земли из космоса (Q3).

Определение типа почвы

По мере того как пространственное и спектральное разрешение спутниковых изображений улучшалось, возрастала пригодность данных для их использования в многокомпонентном статистическом анализе и машинном обучении.

– Сейчас множество ученых предлагают различные подходы к обработке спутниковых и наземных данных. Но основная проблема при использовании данных спутникового зондирования для определения свойств почвы состоит в сложности компонентов почвы и почвенных спектров, – объясняет доцент кафедры метеорологии и климатологии ГГФ ТГУ Ирина Кужевская.

Почва содержит много химических компонентов, включая глинистые минералы, карбонаты, органический углерод, воду в различных состояниях, соли и так далее. При этом гранулометрический состав почвы оказывает большое влияние на почвообразование и агропроизводственные свойства почв. От него зависят процессы перемещения, превращения и накопления веществ; физические, физико-механические и водные свойства почвы, такие как пористость, влагоемкость, водопроницаемость, водоподъемность, структурность, воздушный и тепловой режим.

Полевые работы

– В результате исследования собранные полевые отборы проб позволили использовать методы машинного обучения, чтобы определить наиболее значимые переменные для классификации каждого типа почв. Кроме того, была предложена архитектура нейронной сети, которая способна анализировать почву по данным космического зондирования с точностью до 76%, – уточнила Ирина Кужевская.

Применение подобных технологий напрямую связано с точным земледелием. В научной статье, опубликованной в журнале «Современные проблемы дистанционного зондирования Земли из космоса», рассматривается пример классификации и картографирования почв земель сельскохозяйственного назначения Южной Сибири. Отмечено, что создание нейронных сетей существенно сокращает время расчёта и объём вычислительных ресурсов. 

На сегодняшний день исследования продолжаются – команда ТГУ работает в полях на территории Хакасии.


Источник







Возврат к списку