3.4. Географическое распределение испарения

Важнейшим компонентом водного баланса является испарение. Проблема получения климатически достоверной информации об испарении стоит гораздо острее, чем в отношении осадков. Подавляющая часть известных данных базируется на расчетных методах. Расчеты более-менее надежны над  водной поверхностью, где можно принять испарение за испаряемость и вычислить это значение. Над сушей такой подход невозможен, поэтому на редкой сети производится непосредственное измерение испарения, однако пространственное климатическое обобщение этих данных затруднительно (Кислов А.В., 2011).

На рис. 3.5 и в табл. 3.3 приводятся рассчитанные годовые суммы испарения с подстилающей поверхности, из которых следует, что испарение с океанов значительно превышает испарение с суши. На большей части акватории Мирового океана в средних и низких широтах испарение изменяется от 600 до 2500 мм, а максимумы достигают 3000 мм. В полярных водах при наличии льдов испарение сравнительно невелико. На суше годовые суммы испарения составляют от 100–200 мм в полярных и пустынных районах (в Антарктиде еще меньше) до 800–1000 мм во влажных тропических и субтропических областях (юг Азии, бассейн р. Конго, юго-восток США, восточное побережье Австралии, острова Индонезии, Мадагаскар). Максимальные значения на суше – несколько больше 1000 мм (Хромов С.П., Петросянц М.А., 2001).

Рис. 3.5. Распределение средних годовых значений (мм/год) испарения с подстилающей поверхности (Атлас теплового баланса земного шара, 1963)

 

Таблица 3.3. Годовые значения испарения (мм) для разных поясов Северного полушария  (по данным Будыко М.И., 1980)


 

Таким образом, в среднем по широтным зонам в Северном полушарии наибольшие годовые значения испарения наблюдаются в тропиках. По мере продвижения от тропиков к полюсам испарение уменьшается. В экваториальной зоне и в высоких широтах средние годовые значения испарения над сушей и морем примерно одинаковые, но в тропиках и умеренных широтах испарение с поверхности моря больше, чем с поверхности суши. Аналогичное распределение испарения и в Южном полушарии, но в целом по полушарию испарение выше и составляет примерно 1250 мм, так, площадь, занятая океаном, в том полушарии больше (для Северного полушария среднее годовое значение испарения около 770 мм) (Климатология, 1989).

Для получения физически аргументированных представлений об особенностях пространственной картины испарения можно принять во внимание то, что турбулентный поток водяного пара определяется вертикальным градиентом влаги в приводном слое и развитостью турбулентного режима, который может быть параметрически охарактеризован величиной модуля вектора скорости ветра и критерием устойчивости стратификации атмосферы. С этой точки зрения становится понятно, например, почему вдоль стрежней теплых течений (Гольфстрима, Куросио, Бразильского, Восточно-Австралийского) испарение велико. Особенно оно увеличивается в зимнее время, когда на морские акватории попадает (из-за преобладания западного переноса) сухой холодный воздух, сформировавшийся во внетропических континентальных центрах высокого давления. При этом возрастает градиент удельной влажности и резко усиливается турбулентность из-за формирующейся неустойчивой температурной стратификации.

Рассмотренные положения позволяют объяснить существование больших осадков ВЗК с точки зрения баланса количества осадков (r) и величины испарения (Е) (рис. 3.6). Над обширными частями океанов воздушные массы пассатов накапливают влагу (здесь Е r > 0) и «выливают» эту воду в ВЗК (где Е r < 0). Облачные системы полярно-фронтовых циклонов формируются в тропическом влажном воздухе, так что переносимый ими в высокие широты и на континенты водяной пар (туда, где Е r < 0) также собран с тропических и субтропических акваторий Мирового океана.

Баланс влаги «испарение минус осадки» позволяет понять основные географические закономерности формирования речного стока – наиболее полноводны те реки, бассейны которых находятся на территориях, где Е - r< 0. Характерными примерами являются реки Амазонка, Конго, Ганг, Брахмапутра и др. Причем полноводны не только названные великие реки, простирающиеся на тысячи километров, но и сравнительно небольшие по протяженности реки крупных островов, например Индонезии, круглогодично питаемые обильными осадками, количество которых существенно превышает испарение.

Для океана атмосферный баланс влаги «испарение минус осадки» представляет собой вертикальный поток «пресной воды». Он определяет в главных чертах пространственную неоднородность поля солености вод. В Тихом океане осадки превышают испарение, а в Атлантическом (и Индийском океане) испарение больше осадков и больше соленость приповерхностных слоев, причем ее пространственное распределение следует за распределением баланса «осадки минус испарение». Однако не все особенности поля солености определяются исключительно этим балансом. Так, распреснение вод локально возрастает вблизи устьев крупных рек (Амазонка, Конго, Ганг). В полярных широтах помимо названных факторов активную роль в процессе формирования поля солености играют пресные воды, образующиеся при таянии  снежного и ледяного покрова (Кислов А.В., 2011).

Рис. 3.6. Атмосферный баланс влаги «испарение минус осадки» над океанами (см/год): 1 – изолинии >0; 2 – изолинии <0 (Кислов А.В., 2011)